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Setting the problem	



•  Several open questions in modern  Astrophysics ask for new 
paradigms.	



•   No evidence of Dark Energy and Dark Matter at fundamental 
level (LHC, astroparticle physics, ground based experiments…).	



•  Such problems could be framed extending GR at infrared scales	


•  GR does not work at ultraviolet scales (no quantum gravity theory 
up to now).	



•  f(R)-gravity as minimal extension but other modifications are 
possible.	



•  Several stellar structures cannot be addressed by the standard 
theory of stellar evolution (magnetars, variable stars, etc..)	



•  Big issue: Is it possible to revise stellar theory in view of extended 
gravity?	





Hydrostatic equilibrium of stellar structures	



The condition of hydrostatic equilibrium in 
Newtonian dynamics is	



²    p is the pressure,	


²     Φ is the gravitational potential,	


²     ρ is the density	



The Poisson equation	



Since we are taking into account only static and stationary 
situations, here we consider only time independent solutions	


In general, the temperature  τ appears and the density ρ satisfies an	


equation of state of the form  	



R. Kippenhahn and A. Weigert, Stellar Structures and Evolution  (Springer-Verlag, Berlin, 1990).	





Hydrostatic equilibrium of stellar structures	



We assume that there exists a polytropic relation 
between p and ρ of the form	



K is the polytropic  constant that can be obtained as a combination of 
fundamental  constants	


The constant ϒ  is the polytropic exponent.	



Inserting the polytropic equation of state, we obtain	



Note that  Φ > 0 is in the  interior of the model, since we define the 
gravitational  potential as -Φ	





Hydrostatic equilibrium of stellar structures	



For  γ≠ 1, the above equation can be integrated 
giving	



we have chosen the integration constant to give Φ = 0 at surface ( ρ = 0)	
  

Is the polytropic index	



Inserting the above relation into the Poisson equation, we obtain a 
differential equation for the gravitational potential	





Hydrostatic equilibrium of stellar structures	



Let us define now the dimensionless variables:	



where the subscript c refers to the center of the star and the relation between ρ  
and  Φ	



Then we obtain the standard Lané-Emden equation describing	


 the hydrostatic equilibrium of stellar structures in the Newtonian 	


 theory	



At the center (r = 0), we have z = 0,  Φ = Φc, ,  ρ = ρc  and therefore w = 1	





The Newtonian limit of  f(R) - gravity	



Let us start with a general class of Extended Theories 
of Gravity (ETG) given by the action	



varying the action  with respect to the metric we obtain 
the field equations	



S. Capozziello, M. De Laurentis Phys. Rep. 509, 167-321 (2011)	


S. Capozziello , M. Francaviglia, Gen. Relativ. Gravit. 40, 357 (2007)	





The Newtonian limit of  f(R) - gravity	



In order to achieve the Newtonian limit of the theory 
the metric tensor  has to be approximated as follows:	



The Ricci scalar formally becomes	



The n-th derivative of Ricci function can be developed 
as	



here R.n denotes a quantity of order O(n)	



S. Capozziello, A. Stabile, and A. Troisi, Phys. Rev. D 76, 104019 (2007)	





The Newtonian limit of  f(R) - gravity	



Field equations  at O (2)-order, that is at the 
Newtonian level, are	



  Δ is the Laplacian in the flat space Rtt = Δ Φ and,  for the 
sake of simplicity, we set f’ (R)_0 = 1 	



We recall that the energy-momentum tensor for a 
perfect fluid is	



	
  p is the pressure and  is the energy density	





The Newtonian limit of  f(R) - gravity	



Being the pressure contribution negligible in the field 
equations in the Newtonian approximation, we have	



  ρ  is now the mass density	



 For f’’(R) = 0 we have the standard Poisson equation	



This means that as soon as the second derivative of f (R) is 
different from zero, deviations from the Newtonian limit of GR 
emerge	



modified Poisson equation	





Stellar hydrostatic equilibrium in f(R) - gravity	



From the Bianchi identities we have	



If the dependence on the temperature  is negligible,  this 
relation can be introduced into field equations, which 
becomes a system of three equations for p,  Φ and	


R.(2) and can be solved without the other structure	


equations.	



Let us suppose that matter still satisfies a polytropic 
equation	





Stellar hydrostatic equilibrium in f(R) - gravity	



we obtain an integral-differential equation for the 
gravitational potential, that is	



is the Green function	





Stellar hydrostatic equilibrium in f(R) - gravity	



Adopting again the dimensionless variables	



is a characteristic length linked 	


to stellar radius ξ	



The Lanè-Emden in f(R)-gravity becomes	





Solutions of the standard and 
modified Lanè-Emden equations	



The task is now to solve the modified 	


Lane´-Emden equation and compare	


 its solutions to those of the standard Newtonian theory	



Only for three values of n, the classical solutions have analytical 
expression	





Solutions of the standard and 
modified Lanè-Emden equations	



The surface of the polytrope of	


index n is defined by the value z = z(n). where   
ρ = 0 and thus w = 0	



For n = 0 and n = 1 the surface is reached for a finite value of z = z(n)	



The case n = 5 yields a model of infinite radius	



It can be shown that for n<5 the radius of polytropic models is finite; for n>5 
they have infinite radius	



One finds z(0)GR = √ 6 , z(1)GR = π, z(5)GR = ∞   	



A general property of the solutions is that z(n)  grows monotonically with the 
polytropic index n	





Solutions of the standard and 
modified Lanè-Emden equations	



Apart from the three cases where analytic 	


solutions are known, the classical 	


Lane´-Emden  has to be solved numerically, considered with the expression for 
the neighborhood of the center	



at lowest orders, a classification of solutions by the index n, that is	



The case  ϒ=5/3 and n= 3/2 is the nonrelativistic limit while the case  γ=4/3 
and n = 3 is the relativistic limit of a completely degenerate gas.	





Solutions of the standard and 
modified Lanè-Emden equations	



For the modified Lane´-Emden, we have an 
exact solution for n = 0, in fact	



where the boundary conditions w(0) = 1 and w’(0) = 0 are satisfied	



A comment on the GR limit (that is f(R.) à R) of above solution  is necessary.	



In fact, when we perform the limit m à ∞ we do not recover exactly w(0)GR (z).	


The difference is in the definition of quantity ξ0	



In GR it is	





Solutions of the standard and 
modified Lanè-Emden equations	



The point z(0)f(R)  is calculated by imposing	


w(0)f(R)(z(0)f(R) ) =0 and by considering the 
Taylor expansion	



we obtain	



Since the stellar radius ξ is given by definition ξ =ξ0  z(0)f(R) we obtain	



By solving numerically the constraint, we find the modified expression of the radius	


If m à ∞ we have the standard expression valid for the Newtonian limit of GR	





Solutions of the standard and 
modified Lanè-Emden equations	



In the f(R)-gravity case, for n=0, the radius is 
smaller than in GR	


In the case n= 1 we obtain	



If we perturb this equations we  have	



The coefficient e-mξ < 1 is the parameter with respect to which we perturb	



And then	





Solutions of the standard and 
modified Lanè-Emden equations	



And the solutions is easily found to be	



Also in this case, for mà∞, we do not recover exactly w(1)GR(z)	



The reason is the same of the previous n = 0 case	



Analytical solutions for other values of n are not available	





Solutions of the standard and 
modified Lanè-Emden equations	



Finally we report the gravitational	


potential profile generated by a spherically 
symmetric source of uniform mass with radius ξ	



We can impose a mass density of the form	



	
  	
  Θ is the Heaviside function and M is the mass	



By solving field equations inside the star and considering the boundary conditions 
w.(o) = 1 and w’(0)=0, we get	



In the limit mà∞ we recover the GR case	





Solutions of the standard and 
modified Lanè-Emden equations	



Plot of solutions (blue lines) of standard	


Lane´-Emden: w(0)GR(z) (dotted line) 
and w(1)GR(z) (dashed line). The green 
line corresponds to w(5)GR(z)	



The red lines are the solutions of 
modified Lane´-Emden: w(0)f(R)(z) 
(dotted line) and w(1)f(R)(z) (dashed line).	



The blue dashed-dotted line is the potential derived from GR wGR(z) and the red dashed 
dotted line is the potential derived from f(R) gravity for a uniform spherically symmetric 
mass distribution	


From a rapid inspection of these plots, the differences between GR and f(R) gravitational 
potentials are clear and the tendency is that at larger radius z they become more evident.	





   Discussion and  Conclusions	



The hydrostatic equilibrium of a stellar structure in the framework of f (R) 
gravity has been considered.	



Adopting a polytropic equation of state relating the mass density to the 
pressure, we derive the modified Lane´-Emden equation and its solutions for 
n = 0,1 which can be compared to the analogous solutions coming from the 
Newtonian limit of GR	



When we consider the limit f(R)àR, we obtain the standard hydrostatic 
equilibrium theory coming from GR	



A peculiarity of f(R) gravity is the nonviability of the Gauss theorem, and 
then the modified Lane´-Emden equation is an integro-differential equation 
where the mass distribution plays a crucial role	


The correlation between two points in the star is given by a Yukawa-like 
term of the corresponding Green function	





    Discussion and Conclusions	



These solutions have been matched with those coming from GR and the 
corresponding density radial profiles have been derived	



In the case n = 0, we find an exact solution, while, for n= 1, we used a 
perturbative analysis with respect to the solution coming from GR	



It is possible to demonstrate that density radial profiles coming from f (R) 
gravity analytic models and close to those coming from GR are compatible	



This result rules out some wrong claims in the literature stating that f(R) 
gravity is not compatible with self-gravitating systems	





    Next Steps	



The next step is to derive self-consistent numerical solutions of the modified 
Lane´-Emden equation and build up realistic star models where further 
values of the polytropic index n and other physical parameters, e.g.	


temperature, opacity, transport of energy, are considered.	



These models are a challenging task, since, up to now, there is no self-consistent, 
final explanation for compact objects (e.g. neutron stars) with masses larger 
than Volkoff mass, while observational evidence widely indicates these objects. 
Another important issue is that such an approach could allow to address 
dynamics of systems like Wolf-Rayet stars,  magnetars  and  oscillating stars.	



Work in progress…see Mariafelicia Talk!	
  


