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Setting the problem

e« Several open questions in modern ﬂstrojoﬁysics ask for new
Taraofi ms.
« No evidence @C Dark Ener Y and Dark Matter at ﬁmcfamenmﬂ
[evel (LHC, astrojoam’cfe /%sics, grounc[ based ex]oeriments.“).
« Such proﬁfems could be famec{ extendling GR at infmrecf scales
* GR does not work at ultraviolet scales (no quantum gravity tﬁeorl

Up t0 Now).
g f(piR)- ravity as minimal extension but other mocﬁﬁcau’ons are”
790551’[? .

o Several stellar structures cannot be addressed By the standard.

ftﬁeory of stellar evolution (magnemrs, variable stars, etc‘.)
. CBig issue; ‘Is it yossiﬁ(e to revise stellar tﬁeory in view cf extended.

gmw’ty?



ﬂ-[fyc{rostaﬁc equi(iﬁrium cf stellar structures

The condition of ﬁyc{rosmu’c equiﬁ’ﬁm’um M
“Newtonian cfynamies s

| 7 <> p is the pressure,
dl _ d®d > O s the gmvitationa[ Joo‘wn’a’af,

dr dr < p is the density
1 d( ,dod
The Poisson equation — — |\~ | = —47Gp
r= dr dr

Since we are taﬁing into account onfy static and smu’onar%
situations, here we consider on[y time incfejaenc[ent solutions

In genemf, the temperature T appears and the c[ensity o) satisﬁes an
equation of state (f the form

p = p(p, 7)

&Kiﬂoenﬁaﬁn and A. Weigert, Stellar Structures and Evolution (Syringer—\/er(ag, Berlin, 19 90).



ﬂ-[fyc{rostaﬁc equi(iﬁrium cf stellar structures

We assume that there exists a yofytrojoic relation,
between P and p @( the form

p — K ,0 Y
Ks the po(ytrojoic constant that can be obtained as a combination of

ﬁmcfamenm[ constants

The constant Y is the Joofytro]oic exponent.

“Note that ® > 0 is in the interior of the model, since we o[eﬁne the-
gravitaﬁona[ Joonmu’a[ as -o

Tnserting the polytropic equation of state, we obtain
g e porytropic eq

dd _,dp
T = yKpY 2
Py



For v =1, the above eoluau’on can be inwgmtwﬂ
giw’ng

_ vy — 1/ (y=1 e |
27l =B — _[ ] PUo-D = A D"

vK

v — 1
"We have chosen the integration constant to give ® =0at smface (p=o0)
| .
n = ﬁ s the Joofymygw index

Inserting the above relation into the Poisson equation, we obtain a
c[iﬁ(erentia[ equation for the gmvimu’onaf }oownu’a[

/2 2 dob
s + — = —47GA, D"
A2 r dr




Let us cfeﬁne now the dimensionless variables:

\/XA,,@;{‘ () =2 (p)l/”
- = wlz) = = | —
== Ixl 2 D, P,

C

Where the suﬁscm’yt C refers to the center of the star and the relation between p
and ©

At the center (r = 0), we havez =0, ® =, p = p. and tﬁer@"’ore w=1

Then we obtain the standard Lané-Emden ecluation cfescm’ﬁing
the ﬁycfrostan’c equifiﬁm’um @C stellar structures in the Newtonian

frﬁeory

0 |
d“w 2 dw
4+

+wt =0

d7? z dz



The Newtonian [imit of f(R) - gravity

Let us start with a genem[ class of Extended Theories
cf Gravity (E7G) given By the action

A = fdhl)(\/__g[f(R) + X£171]’

\/aryin the action with respect to the metric we obtain
the ﬁe d ecluau’ons

]C

‘f/R,U,Z/ o 3(2,&1/ o ]CQIU,Z/ _I_ (glu,ll ‘f/ — XTILLZ_I

300f + f'R — 2f = XT,

S. Capozziello, M. De Laurentis Phys. Rep. 509, 167-321 (2011)
S. Capozziello , M. Francaviglia, Gen. Relativ. Gravit. 40, 357 (2007)




The Newtonian [imit of f(R) - gravity

In order to achieve the Newtonian [imit of the tﬁeor%
~the metric tensor has to be a]a]oroximate as fo((ows:

1 —2®(1, x) + O(4) O(3)
S = ( 0(3) —8;; + 0Q) )

The Ricci scalar forma[fy becomes

R ~ RY(t, x) + O4)
The n-th derivative of ‘Ricci ﬁmcn’on can be cﬁzve[ojoecﬂ

as

f(R) ~ f*(R® + O4)) ~ f*(0) + " HO)R® + O4)
here R denotes a quantity of order O(n)

S. Cayozzie[fo, A. Stabile, and A. Troisi, CPﬁyS. Rev. D 76, 104019 (2007)




The Newtonian [imit of f(R) - gravity

Field equations at O (2)-order, that is at the

“Newtonian level, are

R(2)
Ry ——-—f"(0) AR® = XT;/

_3f//(0) A R?) — Rp2) = XT(O),
A is the Lajofaciom in the ﬂat space Ry =A @ and, for the
sake of simja[icity, we set f’ (R)_o=1
W@ reca[f tﬁat tﬁe energy-momentum WHSOTfOT A

ipmfect ﬂm’c[ is

T,,=(e+pu,u, —pg,,

P is the pressure and 1is the energy dénsﬁy




The Newtonian [imit of f(R) - gravity

ﬁeing the pressure contribution neg[igiﬁ[é in the Jiefcﬂ

ecluations in the Newtonian ajojoroximation, we have

R(2)

fmoa[i’ﬁea[ ‘Poisson eclua,u’on AD+ 2

3f//(0) A R(Q) + R(2) — _Xp’

+ £1(0) AR = =X

0 1is now the mass c{énsity

‘For f”(ﬂ{) = 0 we have the standard Poisson equation
AD = —47Gp

This means that as soon as the second derivative of f (R) is
diﬁ(erent ﬁom zero, deviations from the Newtonian [imit of gﬂ{)

emerge




Stellar hydrostatic equilibrium in f(R) - gravity

From the Bianchi identities we have

op |l
L=t

(') ln(gff
0X -

k

THY. = ()
& 0X

ﬂf the déyemﬁence on the temperature is negﬁ’giﬁ[é, this
Telation can be introduced into ﬁe[&f equations, which.

becomes a system of three equations fot%p, ® and
R(2) and can be solved without the other structure

eclua,tions.

Let us suppose that matter still sau’sﬁes a ]oofytro]oic

ecluan’on

p=Kp’




Stellar hydrostatic equilibrium in f(R) - gravity

We obtain an inmgm[-cﬁﬁzrenﬁaf equation for the
gravitational potential, that is

A B(x) + —2)?‘” d(x)"

-~

3 m? XA,
6

jcﬁx’@(x, x ) D(x’)"

G(x, x') = —4 e "ML s the Green function

47 |x—x]|

2 1
m 377(0)




Stellar hydrostatic equilibrium in f(R) - gravity

ézlcfoptmg again the dimensionless variables
x| b

7= w(z) =

50 (I)("

‘= \/ 3 is a characteristic [engtﬁ [inked
2XA, @ 1o stellar radius €

The Lané-Emden in f(ﬂ{)-gmvity becomes

*w(z) 2 dw(z
S ) + - i + w(z)"
dz” 7 dz

méy 1 €/ E o, o
_ 8§() 2 [ LI’Z/Z/[(’”ISL”LA _ ()nzg()|\+~’|]w(2/)n
Z J0




Solutions of the standard and.
anod't:ﬁed' Lané-FEmden equations

’J'ﬁe fOLSé is now to sofve tﬁe modifiedl

Lane “FEmden ecluation and compare
its solutions to those @( the standard Newtonian tﬁeory

On[y for three values of n, the classical solutions have ana(yn’caﬂ

exyression P
n=0—we(z)=1- =
:

B (1), __ SIng
n=1— wgp(z) =

&




Solutions of the standard and.
anod't:ﬁed' Lané-FEmden equations

The surface of the polytrope o
index nj(;s cﬁzﬁrnedjﬁ?y %ﬁe {/gafdg z = 20, where
p =oandthusw=o0

Forn=o0andn =1 the smface is reached for a ﬁniw value cf z =270

The case n = § yie[d3 a model of inﬁniw radius

Tt can be shown that for n<s the radius of J?o[ytro]aic models is ﬁnite; for n>s
f‘tﬁey have inﬁnite radius

One ﬁncfs z(o)ng =4 6, z(l)gR =TI, 2(5)% = oo

A [genem[ property of the solutions is that zW grows monownica,[fy with the-
polytropic index n



Solutions of the standard and.
fmod'zfied' Lané-FEmden equations

Apart ﬁ’om the three cases where cmal:yu’c
solutions are known, the classical
Lane “FEmden has to be solved numerica[fy, considered with the exyression for

the neigﬂﬁorﬁoocf qf the center

V) = 3l
1=0

at lowest orders, a cfassg’ﬁcau’on cf solutions By the index n, that is

2

(n) - < L
V=124 4y
War (2) 6  120°

The case Y=5/3 and n=3/2 is the nonrelativistic [imit while the case Y=4/3
and n = 3 is the relativistic [imit of a com}o[éte[y dégenemw gas.



Solutions of the standard and.
anod't:ﬁed' Lané-FEmden equations

For the modiﬁeof Lane ~Emden, we have an_
exact solution for n=o,in fact

o (z) =1 < 4+ (1 + ’”SC)(’_'"{ l sinhmé& gz
£ )\) - ? 4’”258 |

méyz
Where the Eouncfary conditions w(o) = 1 and w'(0) = o are satisﬁeaf

A comment on the GR [imit (that is f(iR) > R) of above solution s necessary.

n fact, when we Jae'rform the [imit m = « we do not recover exactfy w@gg{ (2).

The di’ﬁ"erence is in the cﬂeﬁniﬁon qf quantity €,

InGRitis &) = JXA 721)"_1



Solutions of the standard and.
anod't:ﬁed' Lané-FEmden equations

The point z(")fsﬂ) is calculated By imposing

"\A/(O)ﬂq{)(z(")f(ﬂ) =0 and By consicﬁm’ng the-
T ay[or exyansion sinhmé,z |
: =20° 1+ —(mé&yz)* + O(méyz)*
méonz 6
) __ 24/6

(0)
We obtain 2./, = _
f(R) \/3+(I+III§)6’_"I§

Since the stellar radius £ is given Ey cfeﬁniu’on ¢ =C, z(")f@ we obtain

‘i [0, !
27wG ‘/1 + 1+3’”§€—m§.

ﬁy sofving numerica[fy the constraint, we ﬁncf the mocﬁﬁecf ex]oression of the radius
Qf m > o we have the standard expression valid for the Newtonian [imit of GR




Solutions of the standard and.
ﬂnodi:ﬁed' Lané-FEmden equations

In the f(CR)-gmvity case, for n=o0, the radius is
smaller than in GR

4 2 O~ y G
In the case n= 1 we obtain W) (2 = Mo jé/“ 4
~ dz? ) 8 Jo )
W = ZW
>< {C)_’”é()k:/l — e*’”g()lz‘iu:/'}vp(zl),

) ) _ (1) - (1) —mé A (1)
le we Joem/nfﬁ this equations we have W ) (@) ~ Wag(2) + e AW (2).

The coeﬁ%ient e™E < 1 is the yammewr with re.yoect to which we Joerturﬁ

And then

)



Solutions of the standard and.
ﬂnodi:ﬁed' Lané-FEmden equations

And the solutions is easi[}/ foum[ to be

1Nz 2 £2 2,(*/)15
oDy sin {l+ m=&§ )I:l+ €

Y@ z (1 + m?&3 1 + m> &3

<

X (cos& /&g + mé&g Sinf/fo):l}

- 17'125(2) [ 2 R
8(1 + m?&Z) L1 + m? &3

X (cos&/Eg + m&Epsing /&p)

sinhm &gz

mé&opz

—+ cosz:l-

Also in this case, for m=> o, we do not recover exact[y w@)ng(z)

The reason is the same of the Jorevious n = 0 case

ana[yu’caf solutions for other values @C n are not available



Solutions of the standard and.
anod't:ﬁed' Lané-FEmden equations

j—%’na[(y we report the (gmvitau’ona[
‘joownu’a[ pro ile genemteaf By a .fpﬁen’caﬁ%

Symmem'c source (Zf umform mass Wll’ﬁ 14 cwﬁ’us E

3IM

We can imjoose a mass dénsity of the form p = yy— O(& — |x|),

O is the Heaviside ﬁmca’on and ‘M is the mass

Cl§y so[ving ﬁe[&[ ecluan’ons inside the star and consicfem’ng the Eounafary conditions
W.(0) = 1 and w’(0)=0, we get
3 I e ™1+ mé)7 T 3 I 222 e (1 + mé) sinhméz
Wf(m(z):[ T3 523 ] [ tT—= T o3 -2 23 :
26 m*é m*§& 26 m*é 2¢ m-¢ méoz

=« 9D
8

In the [imit m=> e we recover the GR case wgr(z) = | — 38



Solutions of the standard and.
anod't:ﬁed' Lané-FEmden equations

\ L
0.8} \s ) o, ]
i N Ve ]
_ KA \\.\ i+~ Plot of solutions (blue lines) of standard
o6] \ \“\\‘\ 1 Lane ™ Emden: w5 (2) (dotted [ine)
g EXY R and w .z (z) (dashed line). The green
0.4F “I\\\\\\ N [ine correyond& to w@gﬁ(z)
B Y \\ N
R W , ,
0 N N The red [ines are the solutions of”
\\\\ X : fmocﬁ,’ﬁecf Lane -Emden: W(O)f R)(z)
ool N NN | (dotted [ine) and wigq(2) (d(asﬁecf [ine).
77 1 2 3 4 5

The blue dashed-dotted line is th

otential derived from GRw

R(Z) cmaf tﬁe 1’66[ 0[@5666[;

e
dotted (ine is the yow’nu’a[ dém’veag}mm f(CR) gravity for a unifgrm gaﬁerica[fy symmetric

mass distribution

Froma m}oicf inspection o tﬁes;yfots, the aﬁﬁerences between GR and f(‘R) gmvitau’onaﬂ

?OTZHU:CL[:S are C[@Cl?" cmcf e ten ency is tﬁat at [d?"g@?’ mcﬁ’us V4 tﬁey Eecome more ew’cfent



Discussion and Conclusions
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